ELE538-Information Theoretic Security Homework-4 1. X Enc METORT Rec X Assume that the blocklength n, the encoder f and the decoder & sotisfy the average distortion constraint $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[d(X_i, \hat{X}_i)] \leq D$ when operated at the rate R. Let M denote the number of the recovery points, then $nR \ge H(M)$ $\geq H(M|\gamma^{n})$ (Conditioning Reduces Entropy) $= \mathbb{I}(X^{n}; M|Y^{n}) \qquad (H(M|X^{n}, Y^{n}) = 0, M \text{ is determined from } (X^{n}, Y^{n}))$ $= \sum_{i=1}^{n} I(X_{i}; M(M, X^{i-1})) \quad (Choin Nle)$ $= \sum_{i=1}^{n} \left(I(X_{i}; X^{i-1}, Y^{i-1}, Y^{i-1}, Y^{i}_{i+1} | Y_{i}) + I(X_{i}; M | Y^{n}, X^{i-1}) \right) \left(X_{i} - Y_{i} - (X^{i+1}, Y^{n+1}, Y^{n+1}_{i+1}) \right)$ $= \sum_{i=1}^{n} I(X_{i}, M, Y^{i+1}, Y^{i+1}_{i+1}, X^{i+1} | Y_{i})$) Let $U_{i} = (M, Y^{i-1}, Y^{n}_{i+1})$ $= \sum_{i=1}^{n} \mathcal{I}(X_i; U_i, X^{i} | Y_i)$ $\geq \sum_{i=1}^{n} \mathcal{I}(X_{i}; U_{i} | Y_{i})$ $(I(X_i; X^{i+}|Y_i, u_i) \geq 0)$ $= \sum_{i=1}^{n} \mathcal{I}(X_{i}; U_{i}) - \mathcal{I}(Y_{i}; U_{i}) \qquad (U_{i} - X_{i} - Y_{i})$ = $n(I(X_T; u_T|T) - I(Y_T; u_T|T))$ Let $T \perp X, Y, U^n$ $\geq n \left(\mathbb{I}(X_{T}; U_{T}) - \mathbb{I}(Y_{T}; U_{T}) \right) \qquad \mathbb{I}(X_{T}; U_{T}) \leq \mathbb{I}(X_{T}; U_{T}|T)$ $I(Y_T; U_T) = I(Y_T; U_T|T)$ $> n R(E[d(X_T, \tilde{X_T})])$ $= n R\left(\frac{1}{n} \sum_{i=1}^{n} E[d(X_i; \widehat{X}_i)] \right)$ > n R(D)

It follows that any achievable rate R must satisfy
$$R \ge R(D)$$
.
Note that $U_i = (M, Y^{i-1}, Y^{n}_{i+1})$ depends on the side information Y^{n} in a non-conal
fashion. Moreover, since \hat{X}_i is a function of (M, Y^{n}) , it follows that restricting
 \hat{X}_i to be a function of $U_i = (M, Y^{i-1}, Y^{n}_{i+1})$ and Y_i does not have us.
 $\left(\begin{array}{c} Note: I called R(D) as the rate distortion function and should any achievable
rate R must be preater than $R(D)$, the question is stated in a way that
 $R(D) \ge must$ be the end result. I hope this does not cause any
discrepang.$

-> In the solution of this problem, the book "Network Information Theory" by El Gomal and Kim is used as a reference.

2. Let us first describe our setting in a block-digram. For each it
$$\{1, 2, ..., n\}$$
,
 $y^{i} \longrightarrow \tilde{X}_{i}(M, Y^{i})$
Rate distortion function with caual side information available at the decoder
(denoted by $R(D)$ throughout this solution) is the informan of rates R s.t. there exists
a sequence of $(2^{nR}, n)$ codes with $\mathbb{E}[d(X^{n}, \hat{X}^{n})] \leq D$.
We shall now prove the following theorem:
Theorem: Let (X, Y) doote two correlated diarete memoryless sources and let $d(x, \hat{x})$ be
a distortion measure. The rate distortion function for X with side information Y couply
 $R(D) = \min_{R_{UX}} \mathbb{I}(X; U)$
 $R(D) = \min_{R_{UX}} \mathbb{I}(X; U)$

Proof of Theorem: (Achievability) We use strongly joint typicality encoding to prove the achievability. <u>Codebook</u>: Fix the conditional pmf(41x) and function $\vec{x}(u, y)$ that attain $R\left(\frac{p}{t+\epsilon}\right)$ where D denotes the allowed distrition. For each $m \in \{1, 2, ..., 2^{nR}\}$, generate independent and random code words $u^n(m)$ according to $\prod_{i=1}^{n} P_U(u_i)$ Encoding: Given a source sequence x^n , find an index M such that $u^n(M)$ such that x^n and $u^n(M)$ are strongly jointly typical, i.e., $(u^n(n), x^n) \in T_{\epsilon'}^{(n)}$. If there are more than are $M \in [2^{nR}]$ s.t. $(u^n(M), x^n) \in T_{\epsilon'}^{(n)}$, choose the smallest index. If there is no index, set m=1. Encoder outputs M.

Deadly: Decoder adjusts the reached on sequence
$$\tilde{x}^{*}(m, g^{n})$$
 by setting $\hat{x}_{i} = \tilde{x}(u_{i}(m)_{i}, y_{i})$
for each is $\{1, 2, ..., n\}$.
Expected Distrition: Denote the choice index by M and let $\varepsilon > \varepsilon^{i}$. Note that
error excuss when $(U^{i}(M), X^{n}, Y^{n})$ are not jointly by plant.
Let $\mathcal{E} = \{(U^{n}(M), X^{n}, Y^{n}) \notin T_{\varepsilon}^{(n)}\}$ denote the error event. Note that \mathcal{E} denotes
the deading error, we may also ensider the ensading error $\varepsilon_{0} = \{(U^{i}(M), X^{n}) \notin T_{\varepsilon}^{(n)} \forall m \in [2^{n} \mathbb{R}]\}$
In that ease, we have
 $P(\varepsilon) = P[\varepsilon_{0} \wedge \varepsilon] + P[\varepsilon_{0}^{c} \wedge \varepsilon] \leq P[\varepsilon_{0}] + P[\varepsilon_{0}^{c} \wedge \varepsilon]$
We know that $P[\varepsilon_{0}] = M[U^{i}(M), X^{n}) \notin T_{\varepsilon}^{(n)}] \rightarrow 0$ as long as
 $R > I(X; U) + 3\varepsilon$ (This u done when we prove the achievability of plain lossy surve coding
theorem. There, we had $\hat{X}(M)$ myled of $U^{i}(M)$. Now consider $P[\varepsilon_{0}^{c} \wedge \varepsilon]$ term.
Since $\varepsilon > \varepsilon^{i}$, $(U^{i}(M), x^{n}) \in \overline{\varepsilon_{1}}^{(n)}$ and $conditioned on $U^{n}(M) = u^{n}$, $X^{n} = x^{n}$
 Y^{n} is distributed as $\prod_{i=1}^{n} R_{Y|UX}(y_{i}|u_{i}, x_{i}) = \prod_{i=1}^{n} R_{Y|X}(y_{i}|x_{i})$$

That is, we have
$$U = X - Y$$
. And by a property of conditional joint
typicality (in particular, item $7c^*$ in class notes) we have
 $P[E_0^c \cap E] \rightarrow 0$ as well. Thus, the ayymptotic expected
distortion when the expectation is below over codebods can be upper
as follows (We assume distortion function satisfies max $d(x, \hat{x}) < \infty$.)
 $E[d(X^n; \hat{x}^n)] = P[E]$. $E[d(X^n, \hat{x})| error] + P[E^c] E[d(X^n, \hat{x}^n)|^{no} error]$
 $\leq P[E]$. max $d(x, \hat{x}) + P[E^c]$ (44) $E[d(X, \hat{x})]$ and prove to
 $q_1^{x} q_2^{x}$
 $\leq P[E]$. max $d(x, \hat{x}) + P[E^c]$. D
 $x_{\hat{x}}^{x}$
Taking now, we see that $P[E] \rightarrow 0$ and $P[E^c] \rightarrow 1$ if $R > I(x; u) + 3\epsilon' = R(\frac{D}{H\epsilon}) + 3\epsilon'$
taking $E[d(x; \hat{x})] < D$

is an achievable rate.

(Converse)

Assume that the blackbysth n, the encoder f and the decoder g soluly the arrayse distribution construct
$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[d(\chi_i, \hat{\chi}_i)] \leq D$$
 when operated at the rate R. Let M denote the number of the manage points. Motivoled by the previous problem, since $\hat{\chi}_i$ is a function of M and Υ^i , we set $\mathcal{U}_i = (\mathcal{M}, \Upsilon^{i-1})$.
Note that $\mathcal{U}_i = \chi_i = \Upsilon$, forms a Markov Chain and just like in previous problem.
 $\hat{\chi}_i$ is a function of \mathcal{U}_i and \mathcal{Y}_i . We have,
 $aR \geq H(M) = \mathbb{E}(\chi^{n_i}; M)$ (M is a function of χ^n)
 $= \sum_{i=1}^{n} \mathbb{E}(\chi_i; M, \chi^{i-1})$ ($\chi_i \neq \chi^{i-1}$)
 $= \sum_{i=1}^{n} \mathbb{E}(\chi_i; M, \chi^{i-1}) = (\chi_i; \chi \neq \chi^{i-1})$
 $= \sum_{i=1}^{n} \mathbb{E}(\chi_i; M, \chi^{i-1}) = (\chi_i; \chi^{i-1}|_{\mathcal{H}_i} \chi^{i-1})$
 $= \sum_{i=1}^{n} \mathbb{E}(\chi_i; M, \chi^{i-1}) = (\chi_i; \chi^{i-1}|_{\mathcal{H}_i} \chi^{i-1})$
 $= \sum_{i=1}^{n} \mathbb{E}(\chi_i; M, \chi^{i-1}) = (\chi_i; \chi^{i-1}|_{\mathcal{H}_i} \chi^{i-1})$
 $= n \mathbb{E}(\chi_i; \mathcal{U}_i; \chi_i)$ ($\mathbb{E}(\chi_i; \chi^{i-1}|_{\mathcal{H}_i}) \geq 0$)
 $= n \mathbb{E}(\chi_i; \mathcal{U}_i; \chi_i)$ ($\mathbb{E}(\chi_i; \chi^{i-1}|_{\mathcal{H}_i}) \geq 0$)
 $\geq n \mathbb{E}(\mathbb{E}[d(\chi_i; \hat{\chi}_i)]$ (by definition of $\operatorname{red} \mathcal{U}_i \chi^{n-1}) \geq n \mathbb{E}[d(\chi_i; \hat{\chi}_i)]$
 $\leq n \mathbb{E}[d(\chi_i; \hat{\chi}_i)]$ ($\mathbb{E}(\mathbb{E}[d(\chi_i; \hat{\chi}_i)]$) ($\mathbb{E}[d(\chi_i; \hat{\chi}_i)]$

It follows that any ochie value rate R must satisfy
$$R \ge R(D)$$
.
Discussion: Why do we lose efficiency provided by $-I(U;Y)$?
Recall,
Plain Lossy-source coding rate distortion function:
 $R(D) = \min I(X; \hat{X})$
 $R_{XIX}: E[d(X, \hat{X})] \le D$
Lossy-source coding with non-caucal side information at the decder:
 $R(D) = \min I(X; U) - I(Y; U)$
 $R_{XIX}: E[d(X; \hat{X})] \le D$

In this case there are two efficiencies thanks to the side information at the decoder, First one is that we now have an auxiliary random variable U and we minimize over P_{UIX} . Note that $\min_{x \in I} I(x; \hat{x}) \stackrel{(*)}{\stackrel{(*)}{\stackrel{(*)}{\sum}} \min_{x \in I} I(x; \hat{y})$ because $P_{\hat{X}|X}$: $E[d(X; \hat{x})] \leq D$

We may choose $Y \neq \emptyset$ and $U = \hat{X}$ to recover the left side in (*). The second efficiency is that we now have $\exists -I(U;Y)$ term in the note distortion function. This is because decoder has some information about \hat{X}_{i+1}^{*} and can adjust itself to recover some more points. Hence, given the some distortion constraint, in the non-ausal version we can compress with lower rotes.

Now, let's go back to the setting of problem 2
Lossy source coding with causal side information."

$$R(D) = \min_{\substack{R \mid u \\ R \mid u \\ R \mid u \\ R \mid u \\ R \mid u \\ E[d(X, \tilde{X})] \leq D}$$

In this case, we are losing the extra
$$-I(U;Y)$$
 term that is provided by the non-consolity. This is because all we have is some past information uncomposed string X^i . This helps us better understand what is compressed into M but also not help us anticipate what integrate is being compressed next, therefore we loose the efficiency provided by $-I(U;Y)$.
Hope this was enorgh of an agrument to make a case.

$$\begin{array}{c} \underbrace{\operatorname{pord} d \operatorname{chim}}_{1} \quad \text{To simplify the offern, let } X \sim \operatorname{ler}(9_2) \quad \text{o.w. the construction below remains}\\ \operatorname{identical. First, consider the case when $\frac{R}{R} \geq 1$. Then in the face, we pick $U = X$
and we get $I(U_j X) = H(X) = 1$. In this case, $I(U_j Y) = 1 - R_e$ is achieved.
Therefore, we may assume $\frac{R}{R} < 1$. In this case, it effices to show that $\exists U \ st$.
 $I(U_j X) = \frac{R}{R_e}$ can be achieved. Below is a construction relad.
Given $R_X \sim \operatorname{Ser}(B_0)$, we construct R_{HIX} to achieve $I(U_j X) = \frac{R}{R_e}$. To do so, we
first construct reverse channel $R_{X/U}$ then we find R_{UX} using $\operatorname{Seyes}^* \operatorname{Rule}$.
 $I(X) = \frac{1}{R_e} \rightarrow H(X) = 1 - \frac{R}{R_e} \rightarrow \operatorname{Thus}$ pick $\varepsilon = h^{-1}\left(1 - \frac{R}{R_e}\right)$
To proceed, let
 $R_X(V) = \begin{pmatrix} t \in K, V = (0,0) \text{ or } (X,V) = (1,0) \\ \varepsilon & (X,V) = (1,0) \\ \varepsilon$$$

So
$$P_{\mathcal{U}}(1) = \frac{1}{2} = P_{\mathcal{U}}(0)$$
, $P_{X|\mathcal{U}} \sim BSC(\mathcal{E})$ with $\mathcal{E} = h^{-1}(1 - \frac{R}{R_{e}}) \implies \overline{J}(\mathcal{U}; X) = \frac{R}{P_{e}}$

by Boyes' rule
$$f_{u|X} = \frac{f_{X|u} \cdot f_{u}}{P_{X}}$$
. Hence, we need $f_{u|X} = f_{X|u}$, i.e.
 $f_{u|X}(o|v) = \tau \cdot \epsilon$. $f_{u|X}(u|v) = \tau \cdot \epsilon$.
 $f_{u|X}(o|v) = \epsilon$. $f_{u|X}(u|v) = \epsilon$.
where $\epsilon = h^{2}(\tau - \frac{R}{R})$.
In that case, $I(X; u) = \frac{R}{E}$.
So we can indeed achieve $I(u; Y) = (\frac{t \cdot R}{R})R$ by picking $f_{u|X}$ as above.
Hence, the key copocity is $C_{u} = \min\left\{(\frac{t \cdot R}{R})R, t - R\right\}$.
Note, if $X \sim Ber(v)$ similar construction yields the following result for key copocity:
 $C_{u} = \min\left\{(\frac{t \cdot R}{R})R, (t - R)h(v)\right\}$

where h(:) denotes binary entropy function.

4. (a) Let X, be distributed occording to Loploce law with mean
$$\mu$$
 and variance $2b^2$.
Assume that $X_{2} = X_{1} + c$. Then
 $f_{X_{1}}(x) = \frac{1}{2b} e^{-\frac{|X-\mu|}{b}}$ and $f_{X_{2}}(x) = \frac{1}{2b} e^{-\frac{|X-\mu-c|}{b}}$
Hence
 $\int_{0}^{b} \frac{f_{X_{1}}(x)}{f_{Y_{2}}(x)} = \frac{|X-\mu-c|}{b} - \frac{|X-\mu|}{b}$

since $|a| - |b| \leq |a - b| \leq |a| + |b|$ we have $|x - \mu| - |c| \leq |x - \mu - c| \leq |x - \mu| + |c|$

$$\Rightarrow -\frac{|c|}{b} \langle l_{op} \frac{f_{X_1}(x)}{f_{X_2}(x)} \langle \frac{|c|}{b}$$

$$\Rightarrow \left| l_{op} \frac{f_{X_1}(x)}{f_{X_2}(x)} \right| \langle \frac{|c|}{b} = \frac{\overline{12}|c|}{Var(X_1)}$$

4(b) Let X, be distributed occording to Gaussian law with mean μ and variance σ^2 . Assume that $X_2 = X_1 + c$. Then

$$f_{\chi_1}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad and \quad f_{\chi_2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Hence,

$$\int_{C}^{L_{1}} \frac{f_{\chi_{1}}(x)}{f_{\chi_{2}}(x)} = \frac{(x-r-c)^{2}}{2\sigma^{2}} - \frac{(x-r)^{2}}{2\sigma^{2}} = \frac{c^{2}-2(x-r)c}{2\sigma^{2}}$$

and this quantity cannot be bounded uniformity for all x.