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Assume
that the block

length n
,

the encoder f  and the deader
g satisfy

the
average

distortion  constraint ÷¥⇒E[dlX; ,I ;) ]{ D when
 operated at the

rate R
.

Let M denote the number of the
recovery points ,

then
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= n #Xt ;utH -IIYT ; utlt ) Let THXYY
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Un '
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It follows that
any

achievable role R must satisfyRZ RID)
.

Note that U
;

 = ( M
,

Y
" 1

,
4,1 ) depends on the side information Y

"

in  a non . causal

fashion
.

Moreover
,

since l% is o faction of (M, Y ")
,

it follows that
restricting

X
;

to be a function of U
;

= ( M
,

Yit
,

Yin
, ) and Yi does not hurt

us .

1¥ I called RCD) as the rate distortion function  and showed
any

achievable

⇐www.YIiaiereni.sn?eIatYpeiinYIeYnitaa?et.Y)
discrepancy .

→ In the solution of this problem
,

the book
"

Network Information They
"

by

El Gamal and Kim  is  used as  a reference .
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Let vs first describe our setting in  a block -

diagram .

For each it { 1,2 , . .

,
n }

,

yi
of

hearer 'AEtYnm'

Rate distortion function  with cad side information  available  at the decoder

( denoted by RID) throughout this solution ) is the infimum of rats R st
.

there exists

a sequence of ( IR
,

n ) codes with Efdlxn
,

I ) ] { D
.

We shall now prove the following
theorem

:

Theorem
: Let (X,Y) denote two  corralaled discrete

memory
less sources and let dlxil be

a distortion measure .

The rate distortion function for X with side information Y causally

available at the deaden satisfies the
following equality

RLDK min I ( X ; a )
Puix

Pxyuy :E[dlX,D]{ D

Proof of Theorem :

( Achievability)

We use strongly joint typicality encoding
t prove the achievability .

Coded Fix the conditional pmflulx) and function Icu
,y ) that  attain R ( TE)

where D denotes the allowed distortion .

For each me { 1,2, .  . .

,
2

" }
, generate independent

and random  codewords unlm )
according

to PI
,

Pului )

b



Eni
: Given  a  source sequence xn

,
find an  index m such that unlm) such that

xn and umm ) are strongly jointly typical ,
i.e.

, lunch
,

XYEIM
.

If there
are more than  one

METER] sit
. (uncmbxnle IH

,
choose the smallest  index

.

If there is  no  index
,

set m=1
.

Encoder outputs m
.

Decoding : Decoder outputs the reconstruction  sequence In (m
, yn) by setting Ii = iluilml ,y ;)

for each ie { 1,2
,

... ,n
}

.

KY,jused in joint typieanlody
.

)

Expecteddtioelori Denote the chosen index by M and let e s
if

Nole that

error occurs when (UYM )
,

Xn
,

Y
') are not jointly typical .

Let E={(wH, X.YD¢I
" } denote the error event

.

Note that E dents

the
decoding

error
,

we

may
also  consider the

encoding
erw eo= Html,x

")¢Ei
"

V. means }

In that case
,

we have

P (E) =P Leone ] + Meinel } FLED + Pleine ]

We know that FLED = PLTUYMI
,

XY¢Td
"

] → 0 as
lay as

R ) I ( X ; U) the ( This  is done when
 we proved the achievability of plain lossg source  coding

theorem
.

There
,

we had km) instead of UYM)) .

Now consider P[ Ein E ] term
.

Since E > e
'

,
(U"(ml

,
Xn) E Ta ! "

and conditioned on Unlmkun
,

Xnexn

Y
"

is distributed as II. Pyuxlyilui ,
xi ) = MI Pyxlyilxi)
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That is
,

we have U - X - Y
.

And
by a property of conditional joint

typicality
l in particular ,

item 7c* in class notes ) we have

p[ Eocn E) → 0 as well
.

Thus
,

the asymptotic expected

distortion when the expectation  is taken  over codebooks
can be upper

as follows ( We assume distortion function satisfies maxdlx
,

xy
( a

. )
x. I

Ehdlxn ;InD=P[E]
.

ELDAY
,

#error ] +PETE
.HN

,
# Hoerner ]

ftp.kl.maxdlxixltpte94.ie#z(x,xnD/DFdYxIIYib
and

properly 4

x. A of
Joint

typicality

{ MET .my#dlxix1tPEc9.D

Taking
n→x

,
we see that PLEHO and PTE ]→1  if R > ILX ; ul He

'
- R(e¥)+3e '

taking
E→0 (and Eto as Ice is needed we see that

min Ilx ; a)
Puix

Pxyuy : ELIH ,IB{ D

is an achievable rate
.

Converse proof  is on the next
page

.

\
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(Converse )

Assume
that the block

length n
,

the encoder f  and the deader
g satisfy

the
average

distortion  constraint nt£⇒E[dlX; ,
I ;D { D when

 operated at the

rate R
.

Let M denote the number of the
recovery points .

Motivated
by

the

previous problem ,
since Xi is a function of M and Yi

,
we set A ;= ( M

,
YM)

.

Note that U
;

 - Xi - Y; forms  a Markov Chain and just like in previous problem

l% is a function of U;  and Yi
.

We have
,

NR ? HIM) =I( xn ; M) (M is a function of X
")

= ¥⇒I( Xi ; ml Xml ( chain rule)

= ItIlxi ;m ,
xml ( x ; Ixia )

= ¥
,

Ilxi ; m
,

Xitlt Ilxi ;
Yitlm

,
x

" ) ( X ;
 - @, xiy - Yit)

= If I( xi ; m
,

Yit
,

x
" )

= ¥
,

Ilxi ; Ui
,

XM)

3¥, #Xi ; A . ) ( I ( x ; ; xiilu ;) > o )

= n Ilxt ; UHT) (where TIU "

,

xn and Y ")

}nI( Xt ; Ut ) ( IIXT ;T)=O and Ilxt ; Hutt 30 )
7 nR(E[d( Xt ; It )] ) ( by definition of rate distortion function )

=nR(tn.FI#dlXi;xiD(RlD) is decreasing in D and )
7nRID)

÷ ?EE[ dlk ; I ) ]

↳



It follows that
any

achievable rate R must satisfyRZ RID)
.

DIE
: Why

do we lose efficiency provided by
- ICU ;D ?

Recall
,

Plain Lossy - source  

coding
rate distortion function .

RLDK min IIX ;I )

Pxyx : Etdlx ,FD{ D

Lossy - source
coding

with non . causal side information  at the decoder :

R( D) = min Ilx ; U ) - Il Yiu )
Pux

Pxyy
,u

: Efdlxix) ]{ D

In this case there are to efficiencies thanks to the side information  at the

decoder
,

First  one is that we now have an  auxiliary random variable U and we

* I

minimize over Puix
.

Note that
rpnxjnx :I(Xix ) 3

pnyin
Ilx ;u ) because

lx

Efdlx ;IB{ D Pyun : Etdlx;xT]{D
we

may
choose YFO and u=X^ to recover the left side in #

.

The second

efficiency is that we now have a  
- Ilu ;

 Y) term  in the rate distortion function
.

This is because decoder has some  information  about

Xjt
,

and can  adjust itself to recover

some more points .

Hence
, given

the same distortion constraint
,

in the non . causal version

we can  compress
with lower rates

.

b



Now
,

lets
go

back to the
setting of problem 2

Lossy source coding with causal side information :

Rl D) = min Ilx ;u )
Pxlu

Pay,u : ETHX
,

I) ]{ D

In this case
,

we are

losing
the extra  

- IIU ;Y ) term that  is provided by the

non - causality .
This  is because  all we

have  is some past  information  uncompressed string
Xi

.

This

helps us better understand what  is  compressed into M but does not help  vs anticipate what

Message
 is

being compressed next
,

therefore  we loose the efficiency provided by
- IIU ;

 Y)
.

→ Hope this was  enough of  an  argument to make a case
.



3. (a) Block -

Diagram
of the setting :

-

- yn"

Ftiz
We are

trying
to find the key capacity Ce in the

one-way
role limited communication

setting .

In this
setting gerpnax

Ilu ;
 Y )

¥Ix ;uM{ R

Note that Ilx ;UIY)= PEIIX ;UH=e ) because

I( X ; UIYH ) - 0 since ¥1 ⇒ XH a. s
.

Note that Ilxiulfltlxl 1

Itx ;uH⇒⇒ since
' to ⇒ * ' as

'

€±ixhIg¥?n¥g.dk?IIIEt)theNot also that IIX ;UlY=e)=I( X ;U ) f
Hence

,
our constraint I ( X ; UIY ) { R reduce

,
to IIX ;u){ min { ¥ ,

1 }

Now
,

we wish to maximize ICU ;Y ) under the constraint I ( X ;U ) { ¥e

but note that since U - X - Y
,

we have

Ilu ;YltIlu ; XIY )= IN ;x )

⇒ T.lu ;Y ) t Pe Ilu ;xl=I( a ;x ) ⇒ Ilu ;D =(tPe) Ilu ;D

minlpkekk
,

. ,

' Minkler ,
%)

Claim : Max Il UIY ) =

y

-
Puix :

Assuming
HIX) -7 bit

# "  " " " £ R

| If X~Ber6 . )

Max Il a ;
 Y )

y

Pan, :

=minfH÷k ,
kasha))

↳ Ilx ;uM{ R



pain
To  simplify the  algebra ,

let X~Ber( 42) ow . the construction below remains

identical
. First

,
consider the case when the 31

.

Then
 in that  case

,
we pick U=X

and we get I( u
; X) = 111×1=1

.

In this  case ICU ;D = t Pe is  achieved .

Therefore
,

we
may

assume The < 1
.

In this case
,

it suffices to show that FU sit
.

I ( a ;x)= I
can be  achieved

.

Below is  a construction method
.

Pe

Given

P×~Ber(

'k)
,

we construct Pun
,

to achieve ICU;X)=¥e .

To do so
,

we

first construct reverse channel Rau then we find Puix
using Boyes

' Rule .

1 ( Let )i.11 - HIXH ) =p±e ⇒ HIXM) = 1 - ¥e .

Consider the  channel Rna #BECK )

U
e- E X

O
•

#
o

¥ → Hlxlukhle ) = 1
- ¥e →Thuspick e=h

" (1-⇒
1 . I

To proceed ,
letP×µ(×lu)={

te k4=G° ) or (x.utan )

E Hit)=@n ) or y, a) =H,o )

Now
,

Given E=htt¥e) find

Punk}=e
- Pu6)t.es#o01z

¥

12=4-4
} + { ( e- 3) ⇒

}=
Yz

3%41
1 1

2

Pu Pxlu Px

so

PullktePutt
,

Px ,u~Bs44 with ⇐

h%
- the) ⇒ Ice ;x)=p±

e



By Bayes
' rule Pun -

PHI
.

Hence
,

we need Pux=Pxiu
,

ie

Px

Pun
,

( dot TE Pun,HH= 1- E

Puixlol 1) = E Pulxlllok E

where ⇐ tit- ¥)In that case
,

Ilxiu ) = ¥ .

So we can  indeed achieve T.lu ;
 Y ) =(tf÷) R by picking

Puix as  above
.

Hence
,

the key capacity is

cumin
{ (E)R

,

t.pe }

Note
,

if X~Ber (a) similar construction
yields

the
following result for key capacity:

Ch=min{(tpeE)R
,

4-Pelhla ) )

where ht ) denotes
binary entropy function

.



4. (a) Let X
,

be distributed
according

to Laplace law with mean p and variance Zb ?

Assume that XEX
,

+ c
.

Then

fx,W=tTe¥± and f×,w=÷seiK¥

Hena

ytfxj.ly . K¥ '

'

Ft

since lal - Ibl { Ia - blflaltlbl we have

lxpl - 14ft x-p - al { lxpltkl

⇒ - ¥HgfIh±ae÷ *¥

⇒

hgfxt.EKF.ru
Varlx , )

4 (b) Let X
,

be distributed
according

to Gaussian law with mean n and variance o ?

Assume that XEX
,

+ c
.

Then

-

( x-p )2
1 to

fxi # =

Erie
and

fxdxi.at#.e*'*
Hence

,

gf¥÷i*¥t÷ .

one 202

and this quantity cannot be bounded uniformly for  all x
,


